

3D Printed Hybrid Motor Fuel Grains

Annual Arizona Space Grant Consortium 2015

Carolyn Taconi <u>Mentor</u>: Dr. Pavlos Mikellides

Objectives

- Assess performance of additive manufacturing for:
 - Viability (Quality, Ease of Use)
 - Regression Rate
 - Material Performance
- Comparison to current methods with traditional materials for application in a launch vehicle

Hybrid Overview

Solid Fuel Grain

Single Burn Port

Hybrid Overview

Key Characteristics:

- Inert Mass Fractions
- Safe Handling/Storage
- Start-Stop-Start
- Low Regression Rate

Regression Rate:

$$\dot{r} = a (G_{ox})^n$$
 $G_{ox} = (\frac{\dot{m}_{ox}}{A_{port}})$

Fuel Mass Flow Rate: $\dot{m}_f = \rho_f A_b \dot{r}$

Efficiency & Performance

Two General Improvement Methods:

- Multiple combustion ports along length of grain
- Increase effective length of grain
 - Swirl Oxidizer Injection
 - Helical Combustion Ports

Why Print?

Material selections

- Polylactic Acid (PLA)
- Acrylonitrile Butadiene Styrene (ABS)
 - Higher Density*
 - Higher Regression Rate*
 - Lower O/F Ratio*
 - * Compared to HTPB
- Enable manufacturing of multi-port geometries

Why Print?

- Design Geometry
- Machine Rods
- Mix and Cast Propellant
- Cure
- Test Fire

Casting Rack (HTPB)

Printing Method

- Design Geometry
- Print
- Test Fire
- Less Labor
- Less Material Waste
- ✓ Rapid Development

Fuel Grains

Standard Single Port Grains

- Segmented to model large-scale conditions
- 8 Total Grains
- 4 Segmented Modified
- Epoxy intoPhenolic Liners

Original Project Breakdown

Print

- ABS
 - Segmented
 - Single Piece
- PLA
- Machine New Injectors
- Cast HTPB

Baseline Tests

- HTPB
- ABS and PLA Initial Hot Fires

Old and New Hybrid Small-Scale Injectors

Further Tests

- Single-Port Grain Sets
- Multi-Port Geometry Grain Sets

Revised Project Breakdown

Print

- ABS
 - Segmented
 - Single Piece
- PLA
- New Injectors
- Compressed Gas
 Overhaul
- CG Regulators
- HTPB Recast
- Configuring New Printer

Baseline Tests

- HTPB
 - Test Revisions due to CG changes
 - Regulator Tests
- Injector Test Plan (Cold Flow) and Testing
- ABS and PLA
 Initial Hot Fires

Further Tests

- Single-Port Grain Sets
- Multi-Port Geometry Grain Sets

Intermediate Results

- Viability (Quality, Ease of Use)
 - ✓ YES But...

- Regression Rate
 - ✓ Theoretical: Improvement Over HTPB
 - Experimental: Awaiting Testing
- Material Performance
 - Experimental: Awaiting Testing

Next Steps

- Rigidbot PrinterCalibrations
- Test Prints

Injector Cold-Flow Tests

Thank You

