The Unimodular Determinant Spectrum Problem

Wilson Lough
NASA Space Grant Symposium

April 18, 2015

The Unimodular Determinant Spectrum Problem

What are the possible determinants of ± 1 matrices?

Order $2 \quad\{0, \pm 2\}$
Order $3 \quad\{0, \pm 4\}$
Order $4 \quad\{0, \pm 8, \pm 16\}$
Order $5 \quad\{0, \pm 16, \pm 32, \pm 48\}$

The Determinant Spectrum Problem

Definition

The order $n \pm 1$ determinant spectrum is the set of values taken by $\frac{|\operatorname{det}(A)|}{2^{n-1}}$ as A ranges over all possible ± 1 matrices of order n.

What is the order n spectra for each $n \in \mathbb{N}$?

The Determinant Spectrum Problem

Definition

The order $n \pm 1$ determinant spectrum is the set of values taken by $\frac{|\operatorname{det}(A)|}{2^{n-1}}$ as A ranges over all possible ± 1 matrices of order n.

What is the order n spectra for each $n \in \mathbb{N}$?

- Dates back to James Sylvester in 19th century
- Hadamard matrices satisfy upper bound ($n=1,2,4 k$)
- Solved for sizes up to size $n=11$ and for $n=13$.
- Conjectures formulated for sizes up to $n=22$

Spectra

For each $n \in \mathbb{N}$ let D_{n} denote the order n spectrum. Given our choice for scaled determinant values, namely $\frac{|\operatorname{det}(A)|}{2^{n-1}}$, the initial spectra are:

- $D_{2}=\{0,1\}$
- $D_{3}=\{0,1\}$
- $D_{4}=\{0,1,2\}$
- $D_{5}=\{0,1,2,3\}$
- $D_{6}=\{0,1,2,3,4,5\}$
- $D_{7}=\{0,1,2,3,4,5,6,7,8,9\}$

Spectra

For each $n \in \mathbb{N}$ let D_{n} denote the order n spectrum. Given our choice for scaled determinant values, namely $\frac{|\operatorname{det}(A)|}{2^{n-1}}$, the initial spectra are:

- $D_{2}=\{0,1\}$
- $D_{3}=\{0,1\}$
- $D_{4}=\{0,1,2\}$
- $D_{5}=\{0,1,2,3\}$
- $D_{6}=\{0,1,2,3,4,5\}$
- $D_{7}=\{0,1,2,3,4,5,6,7,8,9\}$
- $D_{8}=[0,18] \cup\{20,24,32\}$

Spectra

For each $n \in \mathbb{N}$ let D_{n} denote the order n spectrum. Given our choice for scaled determinant values, namely $\frac{|\operatorname{det}(A)|}{2^{n-1}}$, the initial spectra are:

- $D_{2}=\{0,1\}$
- $D_{3}=\{0,1\}$
- $D_{4}=\{0,1,2\}$
- $D_{5}=\{0,1,2,3\}$
- $D_{6}=\{0,1,2,3,4,5\}$
- $D_{7}=\{0,1,2,3,4,5,6,7,8,9\}$
- $D_{8}=[0,18] \cup\{20,24,32\}$
- $D_{9}=[0,40] \cup\{42\} \cup[44,45] \cup\{48,56\}$

Spectra

For each $n \in \mathbb{N}$ let D_{n} denote the order n spectrum. Given our choice for scaled determinant values, namely $\frac{|\operatorname{det}(A)|}{2^{n-1}}$, the initial spectra are:

- $D_{2}=\{0,1\}$
- $D_{3}=\{0,1\}$
- $D_{4}=\{0,1,2\}$
- $D_{5}=\{0,1,2,3\}$
- $D_{6}=\{0,1,2,3,4,5\}$
- $D_{7}=\{0,1,2,3,4,5,6,7,8,9\}$
- $D_{8}=[0,18] \cup\{20,24,32\}$
- $D_{9}=[0,40] \cup\{42\} \cup[44,45] \cup\{48,56\}$
- All known spectra larger than $n=7$ contain gaps.

What are the possible values of $|\operatorname{det}(A)|$ when the entries of A to take on values other than ± 1 ?

$$
\{ \pm 1\} \rightarrow\{ \pm 1, \pm i\}
$$

What are the possible values of $|\operatorname{det}(A)|$ when the entries of A to take on values other than ± 1 ?

$$
\{ \pm 1\} \rightarrow\{ \pm 1, \pm i\}
$$

- $D_{2}=\{0, \sqrt{2}, 2\}$
- $D_{3}=\{0,2,2 \sqrt{2}, 4,2 \sqrt{5}\}$
- D_{4} has 14 values

> "...probably completely intractable."
> -Dr. R. Craigen

The Determinant Spectrum Problem For Quartic Root of Unity Matrices

Definition

The order n quartic root of unity determinant spectrum is the set of values taken by $\operatorname{det}(A)\left(\operatorname{NOT} \frac{|\operatorname{det}(A)|}{2^{n-1}}\right)$ as A ranges over all possible order n quartic root of unity matrices matrices.

What is the order n quartic root of unity determinant spectrum for each $n \in \mathbb{N}$?

Order 2 Spectrum

Order 3 Spectrum

Order 4 Spectrum

Theorem (*)
The order 4 spectrum consists of

$$
\{a+b i \in \mathbb{Z}[i]|a, b \in 2 \mathbb{Z}, a \equiv b \quad \bmod 4,|a|+|b| \leq 16\}
$$

except those of the form $i^{k}(14 \pm 2 i)$ for some power of k.

Proof Outline

- Spectrum closed under multiplication by i^{k}
- Real and imaginary even parts congruent modulo 4
- Chiós method reduced 4 -by- 4 determinant to a 3 -by- 3
- Analyze cases according to matrix entries

Future Work

Orders 5 and 6

The Unimodular Determinant Spectrum Problem

Future Work 3rd Roots of Unity

Acknowledgements

Jeff Rushall, NAU research advisor

Department of Mathematics \& Statistics, NAU

NAU NASA Space Grant

The Unimodular Determinant Spectrum Problem

QUESTIONS?

$$
\begin{gathered}
* \\
*
\end{gathered}{ }_{*}^{*}{ }_{*}^{*}{ }_{*}^{*}{ }_{*}^{*}{ }_{*}^{*}{ }_{*}^{*}
$$

References

Orrick, W., Solomon, B., 2012, Spectrum of the determinant function, The Hadamard maximal determinant problem, http://www.indiana.edu/~maxdet/spectrum.html (January 13, 2015)
L. E. Fuller and J. D. Logan, On the Evaluation of Determinants by Chio's Method, The Two-Year College Mathematics Journal, 6, 8-10 (1975).

