The Unimodular Determinant Spectrum Problem

Wilson Lough

NASA Space Grant Symposium

April 18, 2015

Vilson Lough

The Unimodular Determinant Spectrum Problem

NASA Space Grant Symposium

What are the possible determinants of ± 1 matrices?

Order 2
$$\{0, \pm 2\}$$

Order 3
$$\{0, \pm 4\}$$

- Order 4 $\{0, \pm 8, \pm 16\}$
- Order 5 $\{0, \pm 16, \pm 32, \pm 48\}$

NASA Space Grant Symposium

э

・ロト ・四ト ・ヨト ・ヨト

Wilson Lough

The Determinant Spectrum Problem

Definition

The order $n \pm 1$ **determinant spectrum** is the set of values taken by $\frac{|\det(A)|}{2^{n-1}}$ as A ranges over all possible ± 1 matrices of order n.

What is the order n spectra for each $n \in \mathbb{N}$?

NASA Space Grant Symposium

・ロト ・ 一下・ ・ ヨト ・

Wilson Lough

The Determinant Spectrum Problem

Definition

The order $n \pm 1$ **determinant spectrum** is the set of values taken by $\frac{|\det(A)|}{2^{n-1}}$ as A ranges over all possible ± 1 matrices of order n.

What is the order n spectra for each $n \in \mathbb{N}$?

- ▶ Dates back to James Sylvester in 19th century
- ▶ Hadamard matrices satisfy upper bound (n = 1, 2, 4k)
- Solved for sizes up to size n = 11 and for n = 13.
- Conjectures formulated for sizes up to n = 22

For each $n \in \mathbb{N}$ let D_n denote the order n spectrum. Given our choice for scaled determinant values, namely $\frac{|\det(A)|}{2^{n-1}}$, the initial spectra are:

•
$$D_2 = \{0, 1\}$$

• $D_3 = \{0, 1\}$
• $D_4 = \{0, 1, 2\}$
• $D_5 = \{0, 1, 2, 3\}$
• $D_6 = \{0, 1, 2, 3, 4, 5\}$
• $D_7 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

NASA Space Grant Symposium

・ロト ・ 一下・ ・ ヨト ・

Wilson Lough

For each $n \in \mathbb{N}$ let D_n denote the order n spectrum. Given our choice for scaled determinant values, namely $\frac{|\det(A)|}{2n-1}$, the initial spectra are:

•
$$D_2 = \{0, 1\}$$

• $D_3 = \{0, 1\}$
• $D_4 = \{0, 1, 2\}$
• $D_5 = \{0, 1, 2, 3\}$
• $D_6 = \{0, 1, 2, 3, 4, 5\}$
• $D_7 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
• $D_8 = [0, 18] \cup \{20, 24, 32\}$

3

・ロト ・ 一下・ ・ ヨト・

For each $n \in \mathbb{N}$ let D_n denote the order n spectrum. Given our choice for scaled determinant values, namely $\frac{|\det(A)|}{2n-1}$, the initial spectra are:

$$\begin{array}{l} \bullet \quad D_2 = \{0,1\} \\ \bullet \quad D_3 = \{0,1\} \\ \bullet \quad D_4 = \{0,1,2\} \\ \bullet \quad D_5 = \{0,1,2,3\} \\ \bullet \quad D_6 = \{0,1,2,3,4,5\} \\ \bullet \quad D_7 = \{0,1,2,3,4,5,6,7,8,9\} \\ \bullet \quad D_8 = [0,18] \cup \{20,24,32\} \\ \bullet \quad D_9 = [0,40] \cup \{42\} \cup [44,45] \cup \{48,56\} \end{array}$$

・ロト ・ 一下・ ・ ヨト・

For each $n \in \mathbb{N}$ let D_n denote the order n spectrum. Given our choice for scaled determinant values, namely $\frac{|\det(A)|}{2^{n-1}}$, the initial spectra are:

$$D_2 = \{0, 1\}$$

$$D_3 = \{0, 1\}$$

$$D_4 = \{0, 1, 2\}$$

$$D_5 = \{0, 1, 2, 3\}$$

$$D_6 = \{0, 1, 2, 3, 4, 5\}$$

$$D_7 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$D_8 = [0, 18] \cup \{20, 24, 32\}$$

$$D_9 = [0, 40] \cup \{42\} \cup [44, 45] \cup \{48, 56\}$$

$$All known spectra larger than $n = 7$ contain gaps.$$

Wilson Lough

NASA Space Grant Symposium

What are the possible values of $|\det(A)|$ when the entries of A to take on values other than ± 1 ?

$\{\pm 1\} \rightarrow \{\pm 1, \pm i\}$

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < □

NASA Space Grant Symposium

The search of th

What are the possible values of $|\det(A)|$ when the entries of A to take on values other than ± 1 ?

$$\{\pm 1\} \to \{\pm 1, \pm i\}$$

►
$$D_2 = \{0, \sqrt{2}, 2\}$$

► $D_3 = \{0, 2, 2\sqrt{2}, 4, 2\sqrt{5}\}$

 \triangleright D_4 has 14 values

"...probably completely intractable." -Dr. R. Craigen

・ロッ ・雪 ・ ・ ヨ ・ ・

The Determinant Spectrum Problem For Quartic Root of Unity Matrices

Definition

The order *n* quartic root of unity **determinant spectrum** is the set of values taken by det (*A*) (NOT $\frac{|\det(A)|}{2^{n-1}}$) as *A* ranges over all possible order *n* quartic root of unity matrices matrices.

What is the order n quartic root of unity determinant spectrum for each $n \in \mathbb{N}$?

< ∃ > <

э

< 行

< ≣

NASA Space Grant Symposium

Order 4 Spectrum

Wilson Lough

æ

ł

▲□▶ ▲□▶ ▲□▶

Theorem (*)

The order 4 spectrum consists of

$$\{a+bi \in \mathbb{Z}[i] | a, b \in 2\mathbb{Z}, a \equiv b \mod 4, |a|+|b| \le 16\}$$

except those of the form $i^k(14 \pm 2i)$ for some power of k.

Wilson Lough

NASA Space Grant Symposium

Proof Outline

- Spectrum closed under multiplication by i^k
- Real and imaginary even parts congruent modulo 4
- Chió's method reduced 4-by-4 determinant to a 3-by-3
- ► Analyze cases according to matrix entries

(日)

Future Work Orders 5 and 6

NASA Space Grant Symposium

(日)、<四)、<回</p>

Wilson Lough

Wilson Lough

NASA Space Grant Symposium

Acknowledgements

Jeff Rushall, NAU research advisor

Department of Mathematics & Statistics, NAU

NAU NASA Space Grant

NASA Space Grant Symposium

・ロト ・ 一下・ ・ ヨト・

Wilson Lough

NASA Space Grant Symposium

References

Orrick, W., Solomon, B., 2012, Spectrum of the determinant function, *The Hadamard maximal determinant problem*, http://www.indiana.edu/~maxdet/spectrum.html (January 13, 2015)

・ロト ・日 ・ ・ ヨ ・ ・

L. E. Fuller and J. D. Logan, On the Evaluation of Determinants by Chio's Method, *The Two-Year College Mathematics Journal*, **6**, 8-10 (1975).